

Recent Progress in Stochastic Cloud Clearing and Neural Network Atmospheric Profile Estimation

William J. Blackwell

AIRS Science Team Meeting

September 26-29, 2006

This work was sponsored by the National Oceanic and Atmospheric Administration under contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

MIT Lincoln Laboratory

Recent Updates to SCC+NN Algorithm

- Cloud-cleared radiance estimates are produced for ALL 2378 AIRS channels
- Retrieval is now truly global:
 - Retrievals for ALL latitudes are now supported
 - Ocean and Land cases are supported
 - Day and night
- Quality control has been implemented
- RMS retrieval accuracies have been improved across all QC stratifications
- AIRS-only option implemented

Outline

- Brief algorithm overview
 - Stochastic cloud clearing (SCC)
 - PPC compression
 - Multilayer feedforward neural networks (NN)
- SCC performance with QC
- SCC+NN performance comparisons with Version 4 algorithm
- AIRS-only performance
- Future Work / Summary

Block Diagram of SCC Algorithm

N = 2378 channels

Cho and Staelin, Aug. 2006

MIT Lincoln Laboratory

SCC+NN Quality Control

- Simple, linear function of estimated radiance correction for a set of channels
- Framework allows for altitude-dependent quality flags
- Yield versus accuracy trades can be easily performed
 - For the results I'll show today, the SCC+NN QC has been adjusted to roughly match the performance of the tightest Level 2 V4 test (Qual_Surf).
 - SCC+NN yield exceeds V4 algorithm by a factor of about 4

Combination of Compression and Neural Network

Retrieval Performance Validation with AIRS/AMSU/ECMWF Match-up Data

- >500,000 co-located AIRS/AMSU/ECMWF observations from seven days:
 - 2002: Sep 6
 - 2003: Jan 25, Jun 8, Aug 21, Sep 3, Oct 12, Dec 5
- ~100,000 profiles set aside for validation set
- All latitudes

Stochastic Cloud Clearing NEW: Quality Control

Stochastic Cloud Clearing NEW: Quality Control

SCC + NN T(h) Retrieval NEW: Quality Control

SCC + NN T(h) Retrieval NEW: Quality Control

T(h) RMS Error Versus Cloud Fraction SCC+NN v. V4 (common ensemble)

SCC + NN T(h) Retrieval With and Without AMSU

T(h) RMS Error Versus Cloud Fraction With and Without AMSU

Future Work

- Additional and more extensive performance assessments
 - Additional match-ups with RAOB data
 - Comparisons with latest AIRS Level2 products (v5)
- Algorithm optimizations
 - Improved handling of land / surface emissivity
 - Retrieval extensions to include ozone and trace gases
- Adaptation of algorithm for CrIMSS
 - Very helpful for system performance evaluations
 - Useful tool for cal/val

Summary

- Recent SCC+NN enhancements:
 - Global (all latitudes, land/ocean, day/night)
 - All AIRS channels are cloud-cleared
 - Quality control
 - Improved accuracies
- SCC+NN and V4 comparisons indicate:
 - V4 and SCC+NN both perform very well in regions of light clouds (cloud fractions below 0.4).
 - There appears to be substantial room for improvement in the V4 algorithm in regions of heavy clouds.
- AMSU adds significant information content, both in regions of light clouds and, especially, in regions of heavy clouds